Brouwer fixed-point theorem

Definition (compact and convex subset in real space)

If SS is a (nonempty) compact and convex subset of ℝn\mathbb{R}^n and ff is a continuous function mapping SS into itself, then there exists at least one x∈Sx \in S such that f(x)=xf(x) = x.

Alternative formulation (nn-ball in real space)

Any continuous function G:𝔹n→𝔹nG : \mathbb{B}^n \to \mathbb{B}^n has a fixed point, 𝔹={π±βˆˆβ„n:x12+...+xn2≀1}\mathbb{B} = \{\mathbf{x} \in \mathbb{R}^n : x_1^2 + ... + x_n^2 \leq 1\} is the unit nn-ball.

Notes


References:

  1. T. Başar and G.J. Olsder, Dynamic Noncooperative Game Theory, 2nd edition, Classics in Applied Mathematics, SIAM, Philadelphia, 1999.
  2. https://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem
  3. https://www.homepages.ucl.ac.uk/~ucahjde/tg/html/pi1-08.html
  4. https://mathworld.wolfram.com/BrouwerFixedPointTheorem.html
  5. Brouwer, 1910
  6. Kuga, 1974
  7. https://bpb-us-e1.wpmucdn.com/wp.nyu.edu/dist/5/2123/files/2019/12/Lecture-3-Scribe.pdf